

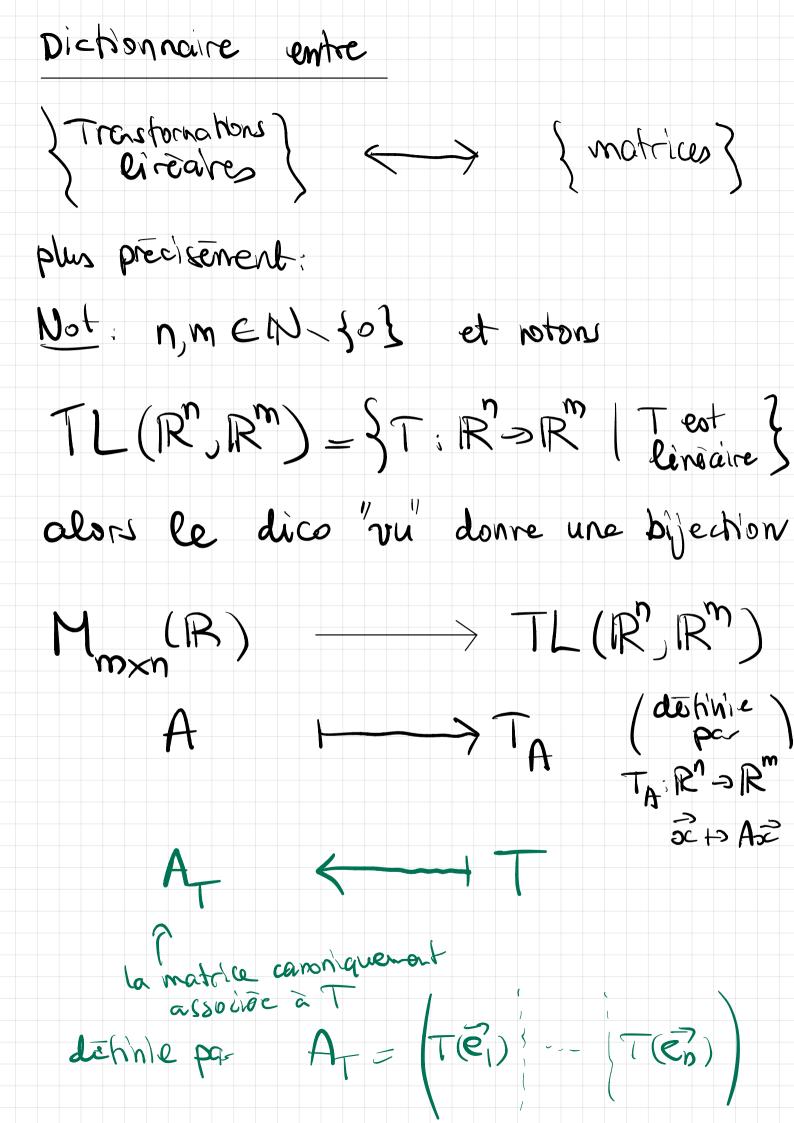
2) T'est sujective 4-D les colonies de AT engendrent RM card il existe 1 plust par ligre

Thist pas surjective (3 plusts) (tevident cor ()) & Im(T)) 2) $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ $(x_{1}) \mapsto (x_{5}) \times (x_{5$ T est lireaire 3 plusts 3 Olgres $\hat{\mathbf{e}}_{1} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ Test sujective Ernala & 22 taug E Thest pas injective

3) $T: \mathbb{R}^2 \to \mathbb{R}^2$ RER param. $(y) \mapsto (x+ky)$ 2 pubts $A_{T} = \begin{pmatrix} 1 & k \\ 0 & 1 \\ T(1) & T(1) \end{pmatrix}$ 2 lignes 2 Colonnes Tet bijechie y (x,0) 4) $T: \mathbb{R}^2 \to \mathbb{R}^2$ $(x) \mapsto (x)$ la proj. orth. sur Ook $A_{\top} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ T(E) T(EV) 1 plust: Toil injechie

no surjective T-T=1 $\left(\begin{array}{ccc}
T \cdot T & \mathbb{R}^2 \to \mathbb{R}^2 & \mathbb{R}^2 \\
\left(\begin{array}{ccc}
(3') & 13 & (3) & 13 & (3) \\
(5) & 13 & (3) & 13 & (3)
\end{array}\right)$ Ply Oncp. 1.

Résuré Chap 1:	
Syst. lineaires	
_ opér. Élèm. _ matrice associés	
_ sol. du syst. (In)homogère _ résultats d'exidence & un	l'icité des blutions
Equations rectorelles/m	
- AZ = To ecriture mate	ricielle
AEMmxn (TR)	XER BER
- espaces R ⁿ	^-> ->
_ comb. lin. de cecteur. _ indupendace lin.	1 25c + mg
Transformations Circoires	(entre R'et R")
T: R" > R" redhant	$T(\vec{z}+\vec{y}) = T(\vec{z}) + T(\vec{y})$
	$T(\chi \vec{z}) = \chi T(\vec{z})$
	Hozig ER"



Dico partait:

A
$$\mapsto$$
 TA \mapsto A(TA) = A

$$T = T(A_T) \longleftrightarrow A_T \longleftrightarrow T$$

Remarque: $T: \mathbb{R}^n \to \mathbb{R}^m$

$$A_T \tilde{x} = \left(T(\overset{\sim}{e_1}) + x_2 T(\overset{\sim}{e_2}) + x_3 T(\overset{\sim}{e_n})\right)$$

$$= T(x_1\overset{\sim}{e_1} + x_2\overset{\sim}{e_2} + x_3\overset{\sim}{e_n}) = T(\overset{\sim}{x_1})$$
Test lineaire
$$T = T(\overset{\sim}{x_1}\overset{\sim}{e_1} + x_2\overset{\sim}{e_2} + x_3\overset{\sim}{e_n}) = T(\overset{\sim}{x_2})$$

$$T = T(x_1\overset{\sim}{e_1} + x_2\overset{\sim}{e_2} + x_3\overset{\sim}{e_n}) = T(\overset{\sim}{x_1})$$

Cha	p 2.	Calcu	.1 mat	riciel			
Noti	i action;						
9	\ \(\times + 2 \)	y+32 =	a 😜	(12	3	$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix}$	3
		54+62		145	6)	(2))
a	a+2b	$=$ t_1		112		14.1	•
4	3a+4l	$= t_1$ $0 = t_2$	(~)	34)(a	$=\begin{pmatrix} t_1 \\ t_2 \\ t_3 \end{pmatrix}$	-
	130+6	$b = t_3$			/	emplacer	
on	peut iv	mbrlger	· Ø &	2	2	emplacer a per exty+32	
$\int \infty$	+24+3	シモ + 2(4x +5v	1+62)		eta	
3	(x+zy+	32) +4	(4x+50	1+62)	= +2	_	
5		+37)+		-			
\	ON	derelop	ge el	- on n	egrope		
		les der					
=0	synon	u 3 1 2 3	nconnue				

Q: Relle est donc la matrice à associée à ce nomeau système? § 2.1 Opérations matrialelles w'u EM-lo) Voc/Notations: Pour A E Mmxn (R) on dévote par Ain ou ai, je R le coeff se tromant en jeve l'igre jeve obonne 1 Li Lm Not $A = (a_{i,j})_{1 \leq i \leq m}$ $1 \leq j \leq m$ $1 \leq j \leq N$ la Lène Glonne de A rotors por $a_{k} = \left(\begin{array}{c} a_{1,k} \\ a_{2,k} \\ a_{m,k} \end{array}\right)$ al ERM $A = (\vec{a})$

Not/Def: les weff aii aree $1 \leq i \leq min(m,n)$ sont les coeff diagonaux de A $A = \begin{pmatrix} 1 & 0 & 1 & 7 & 1 \\ 3 & 3 & 2 & 5 & 2 \\ 0 & -2 & 9 & 6 & 3 \end{pmatrix}$ Matrices parhoulières: A E Mmm (R) A est dite carrèe il m=n Au diagonale s'elle est corrèe et si ai = 0 pour iti $\frac{2}{2} = \frac{10}{01} = \frac{1}{0} = \frac{$ $O_n = \begin{pmatrix} 0 & - & - & 0 \\ 1 & 1 & 1 \end{pmatrix} = matrice nulle nulle$ $A = \begin{pmatrix} \chi_0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -\pi \end{pmatrix}$

matrices eignes: AE Mixn (R) $A = (a_{11} a_{12} - a_{1n})$ matrius col. A E Mmx1 (PR) $A = \begin{pmatrix} a_{11} \\ a_{21} \end{pmatrix}$ Egallic entre matrices: Pour A E Mmxn (R) BEMMXN (PZ) on a Y1615m Y16jen

82.1.1 Somme de matrices et mult par un scalaire

Det ABEMMXN (PZ)
et AER. on pose

mêne taille

 $(A+B)_{i,j} = A_{i,j} + B_{i,j}$

addition matricielle

 $(\lambda A)_{i,j} = \lambda A_{i,j}$

mult d'ure motrice parun scalaire

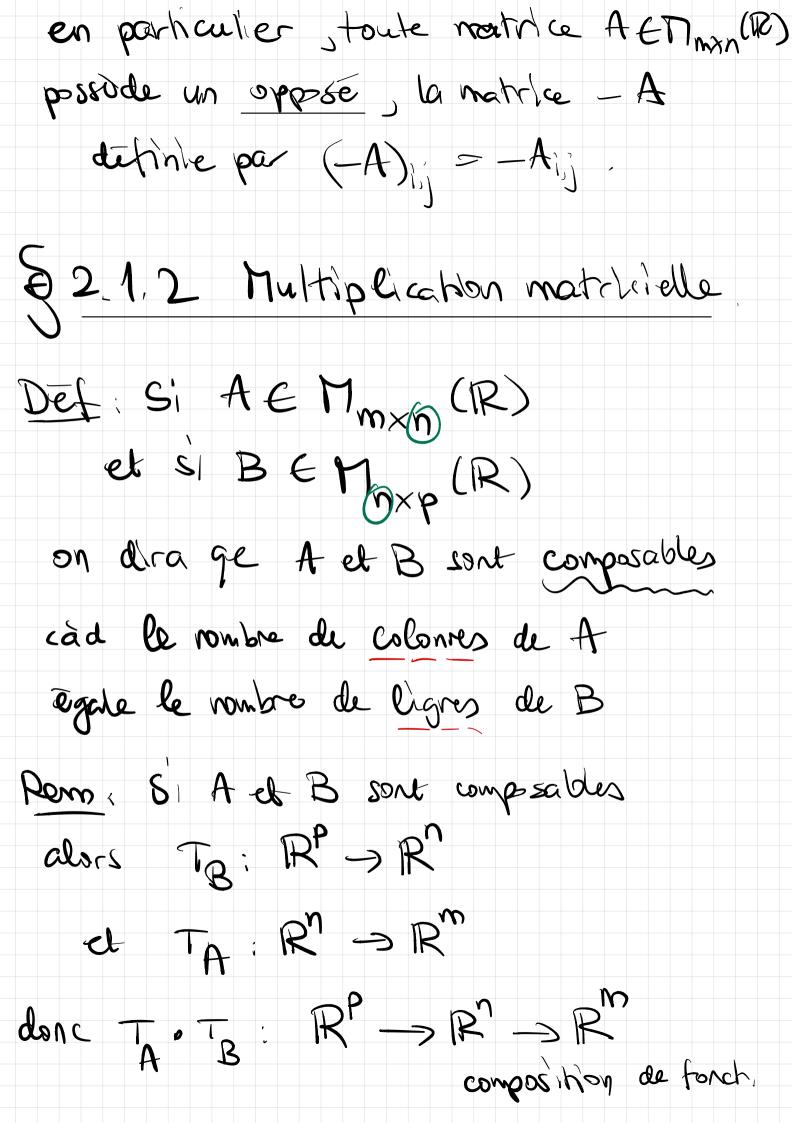
Règles de calcul

.
$$(A+B)+C = A+(B+C)$$

A+B=B+A

. A + O = A

matrice de mère taille qu A



On pase

$$AB = \begin{pmatrix} A\overline{b_1} & A\overline{b_2} & A\overline{b_p} \end{pmatrix} \times \text{m lignes}$$

$$AB = \begin{pmatrix} A\overline{b_1} & A\overline{b_2} & A\overline{b_p} \end{pmatrix} \times \text{p colonnes}$$

on a blen $AB \in M_{mxp}(R)$

$$ex : A = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & 1 \\ -1 & 0 & -1 \end{pmatrix} \times B = \begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 1 & 0 & 3 \times 2 \end{pmatrix}$$

$$A\overline{b_1} = \begin{pmatrix} 2 \\ -2 \end{pmatrix} \times AB = \begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 1 & 0 & 3 \times 2 \end{pmatrix}$$

$$Ab_{1} = \begin{pmatrix} 0 \\ -2 \end{pmatrix}$$
 $Ab_{2} = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$
 $AB = \begin{pmatrix} 0 \\ -1 \\ -2 \end{pmatrix}$

Remarque si
$$\vec{x} \in \mathbb{R}^p$$
 $\vec{z} = \begin{pmatrix} x_1 \\ x_p \end{pmatrix}$

alors of de AB

 $(AB)\vec{z} = (Ab_1) + x_2 (Ab_2) + x_2 +$

Aini la multiplication matricielle correspond à la composition de tondions (et donc à l'ilmbrication de systère)

$$= A_{i,1} B_{1,j} + A_{i,2} B_{2,j} + ... + A_{i,n} B_{n,j}$$

$$= A_{i,1} B_{1,j} + A_{i,2} B_{2,j} + ... + A_{i,n} B_{n,j}$$

$$= A_{i,1} B_{1,j} + A_{i,2} B_{2,j} + ... + A_{i,n} B_{n,j}$$

$$= A_{i,1} B_{1,j} + A_{i,2} B_{2,j} + ... + A_{i,n} B_{n,j}$$

$$= A_{i,1} B_{1,j} + A_{i,2} B_{2,j} + ... + A_{i,n} B_{n,j}$$

$$= A_{i,1} B_{1,j} + A_{i,2} B_{2,j} + ... + A_{i,n} B_{n,j}$$

$$= A_{i,1} B_{1,j} + A_{i,2} B_{2,j} + ... + A_{i,n} B_{n,j}$$

$$= A_{i,1} B_{1,j} + A_{i,2} B_{2,j} + ... + A_{i,n} B_{n,j}$$

$$= A_{i,1} B_{1,j} + A_{i,2} B_{2,j} + ... + A_{i,n} B_{n,j}$$

$$= A_{i,1} B_{1,j} + A_{i,2} B_{2,j} + ... + A_{i,n} B_{n,j}$$

$$= A_{i,1} B_{1,j} + A_{i,2} B_{2,j} + ... + A_{i,n} B_{n,j}$$

$$= A_{i,1} B_{1,j} + A_{i,2} B_{2,j} + ... + A_{i,n} B_{n,j}$$

exemples:
$$\begin{bmatrix} \frac{5}{4} & \frac{5}{3} \\ 4 & -1 \end{bmatrix}$$

1) $\begin{bmatrix} 0 & 1 & -1 \\ 2 & 0 & 1 \end{bmatrix}$

23 $\begin{bmatrix} 2 & 1 \\ 2 & 1 \end{bmatrix}$

B

dut

Aborda

(Aborda

(A

2) calaler le coeff. (3,3) de le natrice AB ou $A = \begin{pmatrix} 2 & 2^{2} & 2^{3} & 2^{4} & 2^{5} \\ 3 & 3^{2} & 3^{3} & 3^{4} & 3^{5} \\ 1 & 2 & 3 & 0 & 1 \\ 4 & 4^{2} & 4^{3} & 4^{4} & 4^{5} \end{pmatrix}_{4X5}$ $B = \begin{pmatrix} \pi \\ \pi \\ \pi \\ \pi \end{pmatrix}$ (AB) = (12301). (1)
Olyre-col. prodult (0)
scalaire = 1.0 + 2.1 + 3(-1) + 0.1 + 1.0 =2-3=-1. Morale: règle ligre-colone plus pratique